概率论基础 —— 8.数学期望、方差、协方差

简介: 我们在学习了离散型和连续型随机概率事件,以及它们的分布函数和密度概率函数之后。接下来我们要学习对概率事件进行评判的技术——期望

我们在学习了离散型和连续型随机概率事件,以及它们的分布函数和密度概率函数之后。接下来我们要学习对概率事件进行评判的技术——期望、方差、协方差。 这些概念有什么用呢,举例来说,对于一次期末考试,如何评估同一个年级的不同班级的学生的学习状况差异,如何找出年级最优班级和最差班级呢,以及在两个班级整体状况都相差不大时,如何比较一个班级学生成绩情况比另一个班级更好呢? 如果还记得我们前面提到过的概率分布函数,那么就可以知道这一类样本的比较,其实属于对样本的分布规律的分析。

文章目录

期望 (Expectation)方差 (Variance / Square Difference)均方差(Mean Variance / Mean Square)标准差(Standard Deviation)关于期望、方差数学符号表示需要注意的一点

协方差(Covariance / Correlation Coefficient)例题例1例2

常用分布的数学期望和方差

期望 (Expectation)

只要样本遵循一定的分布,比如说打靶落入靶上的落点就一定分布在靶心周围。又比如加工一批零件,比如笔记本上常见的m2螺丝,加工出来的螺丝精度一定在标准设计尺寸上轻微浮动。

对于数学期望来说,如果统计的事件样本它本身遵循一定分布规律,那么它必然有朝着某个值收敛的特征,着这就是期望。

计算数学期望的方法其实很简单,就是算概率均值,所以在一些数学统计库(程序)里,相关的函数名字可能叫mean(均值),或者expect(期望)。

它的计算方法,对于离散和连续基本是相似的,其数学表示符号是

E

(

X

)

E(X)

E(X):

离散型

E

(

X

)

=

x

i

p

i

E(X) = \sum x_i p_i

E(X)=∑xi​pi​

x

i

x_i

xi​,

k

i

k_i

ki​分别表示样本值,和样本出现概率。

连续型

E

(

X

)

=

x

f

(

x

)

d

x

E(X) = \int x f(x) dx

E(X)=∫xf(x)dx

f

(

x

)

f(x)

f(x)学了之前的章节应该认识,它就是概率密度。

方差 (Variance / Square Difference)

我们用期望,计算样本通常收敛在什么值的范围,自然还需要关心样本之间的误差范围。以最开始用来举例的班级期末考试为例,学校需要知道某个年级的A,B,C,D四个班级成绩情况,如果计算期望后,发现它们都收敛在80分左右,那么就需要另外一个指标帮助判断各班级的学习情况

在期望都是80分的情况下,学生们的成绩越接近,说明班级同学的差异越少。反之,则说明班级里有学习特别好的人和特别差的人,对于成绩好的学生他们有可能有参加额外的课外补习,而成绩差的有可能放学后放羊的更多。

对于前一种情况,我们从学校的角度来看,说明该班级的负责老师,教育水平不错,管理能力也不错,学生们受到了足够且充分的教育。而后一种情况,既有可能是老师的水平不行,也有可能是班级同学间的家庭差异过大导致的异常。

那么从数学上,一眼看出两组样本在统计上的差异,通常就会用到所谓方差的概念。

Variance 的英文语义是值的样本差异,而方差则是国内根据样本计算方法给予的命名,即平方差,样本与期望之间差的平方,计算方式也大体上差不多。

离散型

D

(

X

)

=

(

x

i

μ

)

2

D(X) = \sum (x_i - \mu)^2

D(X)=∑(xi​−μ)2

连续型

D

(

X

)

=

(

x

μ

)

2

f

(

x

)

d

x

D(X) = \int (x - \mu)^2 f(x) dx

D(X)=∫(x−μ)2f(x)dx

μ

\mu

μ 在这里都表示期望。此外,我们有一个快速计算方差的公式:

D

(

X

)

=

E

(

X

2

)

E

2

(

X

)

D(X) = E(X^2) - E^2(X)

D(X)=E(X2)−E2(X)

即:平方的期望减去期望的平方。

快速计算方差的公式

D

(

X

)

=

E

(

X

2

)

E

2

(

X

)

D(X) = E(X^2) - E^2(X)

D(X)=E(X2)−E2(X) 的推导过程其实是从方差的定义出发,通过简单的代数变换得到的。以下是详细的推导过程:

方差的定义。方差

D

(

X

)

D(X)

D(X) 定义为随机变量

X

X

X 与其期望

E

(

X

)

E(X)

E(X) 之间差异的平方的期望,即:

D

(

X

)

=

E

[

(

X

E

(

X

)

)

2

]

D(X) = E[(X - E(X))^2]

D(X)=E[(X−E(X))2]展开平方。我们首先对括号中的表达式进行展开:

D

(

X

)

=

E

[

X

2

2

X

E

(

X

)

+

E

(

X

)

2

]

D(X) = E[X^2 - 2X \cdot E(X) + E(X)^2]

D(X)=E[X2−2X⋅E(X)+E(X)2] 这里用了平方的展开公式

(

a

b

)

2

=

a

2

2

a

b

+

b

2

(a - b)^2 = a^2 - 2ab + b^2

(a−b)2=a2−2ab+b2,其中

a

=

X

a = X

a=X 和

b

=

E

(

X

)

b = E(X)

b=E(X)。期望的线性性质。期望运算符

E

[

]

E[\cdot]

E[⋅] 是线性的,因此我们可以将期望作用在每一项上:

D

(

X

)

=

E

[

X

2

]

2

E

[

X

E

(

X

)

]

+

E

[

E

(

X

)

2

]

D(X) = E[X^2] - 2E[X \cdot E(X)] + E[E(X)^2]

D(X)=E[X2]−2E[X⋅E(X)]+E[E(X)2]简化表达式。接下来,我们对公式进行简化: 对于第二项

E

[

X

E

(

X

)

]

E[X \cdot E(X)]

E[X⋅E(X)],因为

E

(

X

)

E(X)

E(X) 是一个常数,可以将其提到期望运算符外:

E

[

X

E

(

X

)

]

=

E

(

X

)

E

(

X

)

=

E

(

X

)

2

E[X \cdot E(X)] = E(X) \cdot E(X) = E(X)^2

E[X⋅E(X)]=E(X)⋅E(X)=E(X)2 对于第三项

E

[

E

(

X

)

2

]

E[E(X)^2]

E[E(X)2],因为

E

(

X

)

E(X)

E(X) 是常数,因此其平方也是常数,可以直接简化为:

E

[

E

(

X

)

2

]

=

E

(

X

)

2

E[E(X)^2] = E(X)^2

E[E(X)2]=E(X)2 将这些代入方差的表达式中,我们得到:

D

(

X

)

=

E

[

X

2

]

2

E

(

X

)

2

+

E

(

X

)

2

D(X) = E[X^2] - 2E(X)^2 + E(X)^2

D(X)=E[X2]−2E(X)2+E(X)2合并项。我们合并同类项:

D

(

X

)

=

E

[

X

2

]

E

(

X

)

2

D(X) = E[X^2] - E(X)^2

D(X)=E[X2]−E(X)2 因此,我们得到了快速计算方差的公式。

均方差(Mean Variance / Mean Square)

此外,从方差还引申出均方差的概念,也就是对方差算平均值,在随机下降算法中被应用在评判模型与观测值的误差程度。

D

(

X

ˉ

)

=

D

(

X

)

n

D(\bar{X}) = \frac{D(X)}{n}

D(Xˉ)=nD(X)​

标准差(Standard Deviation)

方差的开根号形式,记得好像中学教材中用的挺多,但是对于科研和实际工作中因为其形式就是方差的开根号形式,所以反而不常用。数学符号通常用

σ

\sigma

σ表示,方差的数学符号通常用

σ

2

\sigma^2

σ2,均方差在传统的数学论文中不怎么常见,所以印象中好像没有专门的符号表示,而在AI领域的论文中通常以简写MSE(Mean Square Equation)或者(Mean Square Error)即均方差误差,形式表示。

另外补充一点,在算法、数据挖掘、AI等领域中,PDF不是指那个看文件的软件,通常指概率密度函数( Probability Density Function)。你看,没用的知识点是不是又增加了一点?

σ

=

D

(

X

)

=

σ

2

\sigma = \sqrt{D(X)} = \sqrt{\sigma^2}

σ=D(X)

​=σ2

关于期望、方差数学符号表示需要注意的一点

另外多说一点,就是在一些论文或者之前提到过的《五种重要的概率分布模型》 中,期望有时候又被写成

λ

\lambda

λ, 而方差一般习惯性用

σ

2

\sigma ^2

σ2 进行表示,因此对于标准差,就是

σ

\sigma

σ 了。

苏联体系、英美体系在很多科学技术上符号的应用上很多没有得到有效的统一(这不仅仅在数学,物理学,电学等诸学科里都有所体现),或者形成个统一的世界规范。这对于做科研,比如在阅读文献的时候会造成一定的混淆。

所以,这要求我们在学习这些知识时,一定要理解公式背后的数学含义。而不能简简单单的死记公式。

协方差(Covariance / Correlation Coefficient)

方差是协方差的一种,不过协方差更多的是表示两个变量的变化趋势是否一致。也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

协方差的计算公式为:

C

o

v

(

X

,

Y

)

=

E

[

(

X

μ

x

)

(

Y

μ

y

)

]

Cov(X, Y) = E [ (X - \mu_x)(Y - \mu_y) ]

Cov(X,Y)=E[(X−μx​)(Y−μy​)]

或者

C

o

v

(

X

,

Y

)

=

E

[

(

X

E

(

X

)

)

(

Y

E

(

Y

)

)

]

Cov(X, Y) = E[(X - E(X))(Y- E(Y))]

Cov(X,Y)=E[(X−E(X))(Y−E(Y))] 也就是X和Y分别与它的期望的差的积。

而从协方差中会得到引申,就是关联系数,即:

ρ

=

C

o

v

(

X

,

Y

)

σ

x

σ

y

\rho = \frac{Cov(X, Y)}{\sigma_x \sigma_y}

ρ=σx​σy​Cov(X,Y)​

这里的

σ

\sigma

σ 是标准差的意思,还有另外的一个表达形式:

ρ

=

C

o

v

(

X

,

Y

)

D

(

X

)

D

(

Y

)

\rho = \frac{Cov(X, Y)}{\sqrt{D(X)} \sqrt{D(Y)}}

ρ=D(X)

​D(Y)

​Cov(X,Y)​

这里都是一个意思,只是表达形式上的差异。它有几个等式,其实非常容易推导并证明,你只要把这几个符号代表的函数式代入就能得到了。

C

o

v

(

X

,

Y

)

=

C

o

v

(

Y

,

X

)

Cov(X, Y) = Cov(Y, X)

Cov(X,Y)=Cov(Y,X)

C

o

v

(

X

,

X

)

=

D

(

X

)

Cov(X, X) = D(X)

Cov(X,X)=D(X)

D

(

X

+

Y

)

=

D

(

X

)

+

D

(

Y

)

+

2

C

o

v

(

X

,

Y

)

D(X+Y) = D(X) + D(Y) + 2Cov(X, Y)

D(X+Y)=D(X)+D(Y)+2Cov(X,Y)

C

o

v

(

X

,

Y

)

=

E

(

X

Y

)

E

(

X

)

E

(

Y

)

Cov(X, Y) = E(XY) - E(X)E(Y)

Cov(X,Y)=E(XY)−E(X)E(Y)

最后,来做一点题吧

例题

例1

设一电路中电流

I

(

A

)

I(A)

I(A) 与电阻

R

(

Ω

)

R(\Omega)

R(Ω) 是两个相互独立的随机变量,其概率密度分别为:

g

(

i

)

=

{

2

i

0

i

1

0

e

l

s

e

g(i) = \left \{ \begin{matrix} 2i & 0 \leq i \leq 1 \\ 0 & else \end{matrix} \right.

g(i)={2i0​0≤i≤1else​

h

(

r

)

=

{

r

2

9

0

r

3

0

e

l

s

e

h(r) = \left \{ \begin{matrix} \frac{r^2}{9} & 0 \leq r \leq 3 \\ 0 & else \end{matrix} \right.

h(r)={9r2​0​0≤r≤3else​ 试求电压V=IR的均值。

扯一点题外话,这类问题在电路中比较常见,比如说直流纹波。比如电路是通过交流电转直流后,经过交变直电路后,多少会存在纹波现象。此外,电路中因为电磁干扰,信号电路也会产生纹波现象。还有,电阻通电后,由于温度、电压变化,也会出现其伏安特性的变化。

这题比较简单,总的来说就是求期望值/均值。只要我们记得对于连续型随机变量,其均值/期望值是如何求解的公式,就能比较容易做出这道题了。

E

(

V

)

=

E

(

I

R

)

=

i

g

(

i

)

d

i

r

h

(

r

)

d

r

E(V) = E(IR) = \int i g(i)di \cdot \int r h(r)dr

E(V)=E(IR)=∫ig(i)di⋅∫rh(r)dr

带入题干给出的密度公式,和积分范围:

E

(

V

)

=

2

3

i

3

0

1

1

36

r

4

0

3

=

(

2

3

)

(

9

4

)

=

3

2

V

E(V) = \frac{2}{3} i^3 \bigg|_0^1 \cdot \frac{1}{36} r^4 \bigg |_0^3 = (\frac{2}{3})(\frac{9}{4}) = \frac{3}{2} V

E(V)=32​i3

​01​⋅361​r4

​03​=(32​)(49​)=23​V

例2

随机变量

X

X

X 的分布律如下:

X012P0.40.30.2

求 (1)

E

(

X

)

E(X)

E(X); (2)

Y

=

X

2

Y = X^2

Y=X2, 求 E(Y); (3) D(X)

解(1), 第一题很简单,直接带入离散型的期望公式

E

(

X

)

=

x

i

p

i

=

0

0.4

+

1

0.3

+

2

0.2

=

0.7

E(X) = \sum x_i p_i = 0 * 0.4 + 1 * 0.3 + 2 * 0.2 = 0.7

E(X)=∑xi​pi​=0∗0.4+1∗0.3+2∗0.2=0.7

解(2),这题跟我们之前做离散型的分布律是一样的,先写出Y的分布律

X012Y014P0.40.30.3

所以

E

(

Y

)

=

0

0.4

+

1

0.3

+

4

0.3

=

1.5

E(Y) = 0 * 0.4 + 1 * 0.3 + 4 * 0.3 = 1.5

E(Y)=0∗0.4+1∗0.3+4∗0.3=1.5

解(3),我们直接引用公式

D

(

X

)

=

E

(

X

2

)

E

2

(

X

)

D(X) = E(X^2) - E^2(X)

D(X)=E(X2)−E2(X),所以有:

D

(

X

)

=

1.5

0.

7

2

=

1.01

D(X) = 1.5 - 0.7^2 = 1.01

D(X)=1.5−0.72=1.01

常用分布的数学期望和方差

再就是这个别人总结的常用数学期望和方差表

还有就是期望和方差的一些计算公式,如果记不住也没关系,可以直接用公式快速的推导。

另外,关于协方差涉及到一些其他知识点,我们在下一章里再见!